Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            A wealth of evidence indicates that children use their developing linguistic knowledge to incrementally interpret speech and predict upcoming reference to objects. For verbs, determiners, case-markers, and adjectives, hearing linguistic information that sufficiently constrains referent choice leads to anticipatory eye-movements. There is, however, limited evidence about whether children also use spatial prepositions predictively. This is surprising and theoretically important: spatial prepositions provide abstract semantic information that must interface with spatial properties of, and relations between, objects in the world. Making this connection may develop late because of the complex mapping required. In a visual-world eye-tracking task, we find that adults and 4-year-olds hearing 'inside' (but not 'near') look predictively to objects that afford the property of containment. We conclude that children make predictions about the geometric properties of objects from spatial terms that specify these properties, suggesting real-time use of language to guide analysis of objects in the visual world.more » « less
- 
            Abstract When a piece of fruit is in a bowl, and the bowl is on a table, we appreciate not only the individual objects and their features, but also the relations containment and support, which abstract away from the particular objects involved. Independent representation of roles (e.g., containers vs. supporters) and “fillers” of those roles (e.g., bowls vs. cups, tables vs. chairs) is a core principle of language and higher-level reasoning. But does such role-filler independence also arise in automatic visual processing? Here, we show that it does, by exploring a surprising error that such independence can produce. In four experiments, participants saw a stream of images containing different objects arranged in force-dynamic relations—e.g., a phone contained in a basket, a marker resting on a garbage can, or a knife sitting in a cup. Participants had to respond to a single target image (e.g., a phone in a basket) within a stream of distractors presented under time constraints. Surprisingly, even though participants completed this task quickly and accurately, they false-alarmed more often to images matching the target’s relational category than to those that did not—even when those images involved completely different objects. In other words, participants searching for a phone in a basket were more likely to mistakenly respond to a knife in a cup than to a marker on a garbage can. Follow-up experiments ruled out strategic responses and also controlled for various confounding image features. We suggest that visual processing represents relations abstractly, in ways that separate roles from fillers.more » « less
- 
            Symmetry is ubiquitous in nature, in logic and mathematics, and in perception, language, and thought. Although humans are exquisitely sensitive to visual symmetry (e.g., of a butterfly), symmetry in natural language goes beyond visuospatial properties: many words point to abstract concepts with symmetrical content (e.g., equal, marry). For example, if Mark marries Bill, then Bill marries Mark. In both cases (vision and language), symmetry may be formally characterized as invariance under transformation. Is this a coincidence, or is there some deeper psychological resemblance? Here we asked whether representations of symmetry correspond across language and vision. To do so, we developed a novel cross-modal matching paradigm. On each trial, participants observed a visual stimulus (either symmetrical or nonsymmetrical) and had to choose between a symmetrical and nonsymmetrical English predicate unrelated to the stimulus (e.g., “negotiate” vs. “propose”). In a first study with visual events (symmetrical collision or asymmetrical launch), participants reliably chose the predicate matching the event’s symmetry. A second study showed that this “language-vision correspondence” generalized to objects and was weakened when the stimuli’s binary nature was made less apparent (i.e., for one object, rather than two inward-facing objects). A final study showed the same effect when nonsigners guessed English translations of signs from American Sign Language, which expresses many symmetrical concepts spatially. Taken together, our findings support the existence of an abstract representation of symmetry which humans access via both perceptual and linguistic means. More broadly, this work sheds light on the rich, structured nature of the language-cognition interface.more » « less
- 
            Symmetry is ubiquitous in nature, in logic and mathematics, and in perception, language, and thought. Although humans are exquisitely sensitive to visual symmetry (e.g., of a butterfly), symmetry in natural language goes beyond visuospatial properties: many words point to abstract concepts with symmetrical content (e.g., equal, marry). For example, if Mark marries Bill, then Bill marries Mark. In both cases (vision and language), symmetry may be formally characterized as invariance under transformation. Is this a coincidence, or is there some deeper psychological resemblance? Here we asked whether representations of symmetry correspond across language and vision. To do so, we developed a novel cross-modal matching paradigm. On each trial, participants observed a visual stimulus (either symmetrical or non-symmetrical) and had to choose between a symmetrical and non-symmetrical English predicate unrelated to the stimulus (e.g., “negotiate” vs. “propose”). In a first study with visual events (symmetrical collision or asymmetrical launch), participants reliably chose the predicate matching the event’s symmetry. A second study showed that this “language-vision correspondence” generalized to objects, and was weakened when the stimuli’s binary nature was made less apparent (i.e., for one object, rather than two inward-facing objects). A final study showed the same effect when nonsigners guessed English translations of signs from American Sign Language, which expresses many symmetrical concepts spatially. Taken together, our findings support the existence of an abstract representation of symmetry which humans access via both perceptual and linguistic means. More broadly, this work sheds light on the rich, structured nature of the language-cognition interface.more » « less
- 
            Fitch, Tecumseh; Lamm, Claus; Leder, Helmut; Tessmar-Raible, Kristin (Ed.)Symmetry is ubiquitous in nature, in logic and mathematics, and in perception, language, and thought. Although humans are exquisitely sensitive to visual symmetry (e.g., of a butterfly), linguistic symmetry goes far beyond visuospatial properties: Many words refer to abstract, logically symmetrical concepts (e.g., equal, marry). This raises a question: Do representations of symmetry correspond across language and vision, and if so, how? To address this question, we used a cross-modal matching paradigm. On each trial, adult participants observed a visual stimulus (either symmetrical or non-symmetrical) and had to choose between a symmetrical and non-symmetrical English predicate unrelated to the stimulus (e.g., "negotiate" vs. "propose"). In a first study with visual events (symmetrical collision or asymmetrical launch), participants reliably chose the predicate matching the event's symmetry. A second study showed that this "matching" generalized to static objects, and was weakened when the stimuli's binary-relational nature was made less apparent (i.e., one object with a symmetrical contour, rather than two symmetrically configured objects). Taken together, our findings support the existence of an abstract relational concept of symmetry which humans access via both perceptual and linguistic means. More broadly, this work sheds light on the rich, structured nature of the language-cognition interface, and points towards a possible avenue for acquisition of word-to-world mappings for the seemingly inaccessible logical symmetry of linguistic terms.more » « less
- 
            Fitch, Tecumseh; Lamm, Claus; Leder, Helmut; Tessmar-Raible, Kristin (Ed.)Symmetry is ubiquitous in nature, in logic and mathematics, and in perception, language, and thought. Although humans are exquisitely sensitive to visual symmetry (e.g., of a butterfly), linguistic symmetry goes far beyond visuospatial properties: Many words refer to abstract, logically symmetrical concepts (e.g., equal, marry). This raises a question: Do representations of symmetry correspond across language and vision, and if so, how? To address this question, we used a cross-modal matching paradigm. On each trial, adult participants observed a visual stimulus (either symmetrical or non-symmetrical) and had to choose between a symmetrical and non-symmetrical English predicate unrelated to the stimulus (e.g., "negotiate" vs. "propose"). In a first study with visual events (symmetrical collision or asymmetrical launch), participants reliably chose the predicate matching the event's symmetry. A second study showed that this "matching" generalized to static objects, and was weakened when the stimuli's binary-relational nature was made less apparent (i.e., one object with a symmetrical contour, rather than two symmetrically configured objects). Taken together, our findings support the existence of an abstract relational concept of symmetry which humans access via both perceptual and linguistic means. More broadly, this work sheds light on the rich, structured nature of the language-cognition interface, and points towards a possible avenue for acquisition of word-to-world mappings for the seemingly inaccessible logical symmetry of linguistic terms.more » « less
- 
            Configurations of support include those that exhibit Support-From-Below (cup on table), as well as those involving Mechanical Support (e.g., stamp on envelope, coat on hook). Mature language users show a “division of labor” in the encoding of support, frequently using basic locative expressions (BE on in English) to encode Support-From-Below but lexical verbs (e.g., stick, hang) to encode cases of Mechanical Support. This suggests that Support-From-Below configurations may best represent the core for the category of support, and could be privileged in supporting early mappings to spatial language. We tested this hypothesis by examining spontaneous productions of children younger than 4 years found in the CHILDES corpora. Children used on to encode Support-From-Below more than other types of support configurations. They also showed clear distinctions in how they mapped different verbs (e.g., BE vs. lexical verbs) to Support-From-Below configurations compared to other support configurations. Analysis of par-ent language suggests that these observed patterns in children’s language cannot be fully explained by input, although a role for input is likely for children’s encoding of Mechanical Support. Thus, a concept of Support-From-Below may serve as a core representation of support, and hence the privileged spatial representation onto which spatial language for support is mapped.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available